o ke

-
[WE=HE AR, < N

Naca TN s6s¢ 0666

T

95E9900

* iy

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

A

/
i

TECHNICAL NOTE 3684

LARGE DEFLECTION OF CURVED PLATES
By H. G. 1ew, J. A. Fox, and T. T. Loo

The Pennsylvania State University

Washington
Cctober 1956

f S RAT £
- PR
(SRS Rp=t I~
2IANaDIne a -
{UL':(\JJPM&;L‘. R
- r“:q & e .y/v o

/! :a"

A S



TECH LIBRARY KAFB, NM

NATTONAL ADVISORY COMMITTEE FOR ABRONAUTICS mn““m“m‘m“mmmu“

TECHNICAL NOTE 3684 0oLL358

LARGE DEFLECTION OF CURVED PLATES
By H. G. Lew, J. A. Fox, and T. T. Loo

SUMMARY

Several problems on the large deflections of curved plates with com-~

pound curvature are treated. The laerge-deflection equations of plates and

of cylinders are used. The effect of initial curvature for a plate under
axial compression 1s to increase its deflection considerably upon the
application of load. With increasing loads, the deflection curves merge

into one regardless of the initial deflection form. It is shown also that

the average shear strain for a plete under shear loading is not much
affected by the initial curvature, at least for the initial deflection

function used. TIn addition, for the circular cylindrical plate with small

initial curvature under axial compression, the deflections of the plate
are affected more by changes in the radius R, than by changes in the

initial curvature.

It is shown that the effective width of the curved pletes in longi-
tudinal compression is reduced by the presence of an initial deflection
function.

INTRODUCTION

The present report treats several problems on the large deflection
of curved plates with campound curvature which are typical of aircraft
structural elements. These elements are acted upon by edge loads (axial
or shear) end the stresses and deflections are investlgated for loads
causing deflections of the order of the thickness of the plate elements.

The work is divided into two parts. In the first part, the large
deflection of a plate with small initial curveture is investigeted for
two loading conditions: exial (compression) and shear. In the second
part, the lerge deflection of a curved plate element with small initial
curvature fram a circular cylindrical shape is considered.

In addition to the determination of the deflection and stresses the
effective widths are celculated for several cases.

A right-hand xyz coordinate system is used in this report.
Rectangular-plan~form plates are considered end the origin of the coordi-
nates is taken for each problem as given in figures 1, 2, and 3.

This investigetion was conducted under the sponsorship and with the
finencial aessistence of the National Advisory Commlttee for Aeronsutics.
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SYMBOLS

Aq,Bq,Cr,Dr coefficients given in appendix B

a,b,1 sheet dimensilons

By functions of wp, end By,; used in equation (12)

c coefficlent used in equation (28)

Cq unknom&l c;n)afficients of complementery stress function (see
eq. (13

D = En3/12(1 - v2)

d total width of sheet, any coordinste system

de effective width of sheet (see fig. T(a))

E modulus of elasticity

F,Fqr,Fgt any stress function and stress-function coefficients
Fo camplementery solution of equation (13)

Fo particular integral of F

G shear modulus

h thickness of shell or plate

k= Womax a2

ky,ks constants in equation (16)

Mq = cosh g‘::r + qbﬂ/ 28a
sinh -%z—’r
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m,n,q,r,s,t

u,v,w

=}

Uo

W, ¥Wmn

Wo,0mn

Ve

X,¥,2

constants

maximm velue; used as a subscript
surface loed

loed per unit length of edge

average campressive stresses in x- and y-directions,
respectively

radius of circular cylindrical curved plate from which compound

curved plate is a deviation
strain energy of bending and stretching
displacements in x-, y-, and z-directions, respectively
average displacement

initial displacement

total potential energy
potential energy of applied load

totdl deflection and coefficlent of totael deflection
initial deflection and coefficlent of initiel deflection
deflection at center of plate

additional deflection

coordinates of a point

medien-fiber strains
extreme-fiber bending end shearing strains

average edge strain

Poisson's ratio
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fiber stress
ox',0y',0yy' medien-fiber stresses
ox'"s0y",0xy" extreme-fiber bending end shearing stresses

() average value

LARGE DEFLECTION COF CURVED PIATES
Flat Plates With Small Imitial Curvature

Equations of equilibrium.- The equetions governing the large deflecy
tion of a thin curved plate in which the deflectlons are still smell enough
to use the simplified formulas for the curvatures have been derived by
Von Keérmén and by Marguerre (ref. 1) and can be written as

2
2 2 2 2 2
| =E<awl> Py Py S Py

- + 2
ox Ay axz ay.a x dy &x Oy
Bzwl B2wo Bewo 82W

1
2 o7 32 52 (1)

(2)

Equation (1) represents the campatibility equetions for the medisn-fiber
strains for a plate with an initial middle surface deflection w,. These

straeins are
2 aw>2
v - du, Lfow) _ 1%
x ax+2@:) 2\ox
v v, 1w\ L 190)?
o - T - Y O
,ov =, Mo o
¥ 3y X xdy x o J
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Equetion (2) is the equilibrium equation teking into account the initial
deflection wy of the middle surface. The additional deflectlion appears
in the left side since 1t involves bending moments which depend only on

the change in curvature while the slopes on the right depend on the total

deflection.

In addition, the median-fiber stresses and strains are

2
t _OF
Oy = —
ay_z
0"=§_2;F_
M Bx2
2
a. ':—_iL
Xy dx Oy
X B\ 2 2
oy ax
E8x2 By2
y '=_2(;+v)821?
Xy E ax dy

The extreme-fiber bending and shearing stresses are
2 2

o o ( IS} Wy . o Wy
x = = v >
2(1 - v \a2 3y
2 2

w_ B /Bwl+vawl
2(1 - vz)\ay2 x2

&
|

2
o = Eh an

¥ T 20T+ v) x oy

> (&)

> (5)
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The strain energy of stretching and bending of the plate is given by
1 1 | PR § 12
U=%If{(cx+oy)-2(l+v)|:oxcy-('rxy)]}d_xdy+
2 2 2 2
dw, oW ow
D 2 o1 - 1 1_( 1>
2 [iwon)’ - 20 - 9| = -lay) |jmy @

Note that

2 2
%, B, [
1 1 _ 1 dx dy = O
ax2 byz dx Jy,
if wy is zero at the edges. Thus, the total potentlial energy is

V=U+W (7)

where W is the potential energy of the applied loads. The multiple
integration is taken over the area of the plate.

Plates with normal edge loads.- The coordinate system used for and
the manner of loading plates with normal edge loads are shown in figure 1.

Since this theory will be applied to plates with symmetric initial
deflections and loads the assumption that there is symmetry about the
center lines of the plate will be used here. The followlng boundary
conditions appear to be reasonasble representations of such plate elements:

(1) The resultant load is constent in the x-direction (zero load
in y-direction); that is,
b
Pyb = h\jp o' dy = -pyhb = Constent
o)
where Py 1is the load per unit length of the edge.
(2) The edges x =0 eand x = a are straight.
(3) Shearing stresses are zero at all edges.

For this case the potential energy of the applied load for normal
edge loads along the edges x =0 and x =a 1s
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It is convenient, wilth the coordinate system shown in figure 1,
to assume w and Wy, as a double sine series in x and Yy. Hence, let

o

W= Z i vﬁnnsinl-l%x as:f_ngf-ghZ (9)

m=1,2,5,... n=1,2,3,...
[o2] o0
Wy = > > By sin B2X sin Y (10)
n=1,2,3,... n=1,2,3,...

Upon substitution of equations (9) and (10) into equation (1), it is
seen that a particular integrel for ¥ wlll be

o
=X 4 E E For cos PX s BY (11)
2 q=0,1,2,... r=0,1,32,... a b

where D, 1s the average campressive stress in the x-direction. The
value of Fgr 1n terms of the unknown coefficients wpy and Bpy 1is

(o]
= E
qu - 5 Z By (12)
LL(q2 by g) i=1
a b

Values of qu are tabulated in table 1 and the quantities Bj are
functions of Wy, &and Bpy.

The requirement that only one palr of edges x =0 and x =a 18
loeded and that the other palr is stress free edds a complementary solu-
tion to F (eq. (11)). This function is

=]

- D> X grb grb El_’f( .. E) -
Fq _ Cq cos = (l + ) coth oy ) cosh = 5
q=1,2,35,...

-3 o 25 -3) )
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Assertion of the boundary condition

o' =0 (14)
at y =0,b leads to the value for Cq of
F
qr
_a=2,k,6,...
qxb 2a
cosh e + o oo
2a

Thus, all the boundary conditions are satisfied by these solutions.
Condition (1) is satisfied by using equations (3), (11), and- (14). Con-
dition (2) can be verified if the relation between strain and displace-
ment u dis Integrated. This integration leads to

a 2 2
e = —Ugeg = v L|(3w)® - (9%
Ux=g Ux=0 o/ €x 5 <§x> <§m:> dx

©
= - B

25(%%) " 3 ) 5

i 2 (Wmn2 ) anz)

35,... n=1,5,5,...

which is a constant. The remaining condition of zero shearing stresses
is obviously satisfied.

Method of Solution.-~ The direct method of solution utilizing the
principle of minimum potentiasl energy will be used instead of attempﬁing
to satisfy the remaining differential equation. Thus far, the stress
function F 1s known in terms of unknown coefficients of the additlonal
deflection wy(x, y). By the direct method, a first variation of the

total potential energy set equal to zero will yleld nonlinear algebraic
equations for the coefficient wp, which then may be solved conveniently

by successive spproximation.

The formation of the total potential from equation (7) by insertion
of equations (9), (10), (11), and (13) leads to integrals which are listed
in appendix A. )

In this procedure & system of nonlinear algebralc equations is
obtained for the coefficients Wy, 1n terms of the parameter of the
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load (hp_x"ba/ -:rzD) . For the numerical examples given, four unknown coef-

ficients LERE, wl.j, w31, and w33 ere used. It is convenient in the

solution of these algebreaic equetions to assume a value for Wy and

then to transpose all nonlinear terms to the right side. A first approx-
imetion is then obtalined by neglecting all nonlinear terms on the right
glde and solving the remaining equations by Crout's method. A second
gpproximaetion 1s obtained by substituting the results of the first
approximstion in the right side of the equations and applying Crout's
method. The convergence is very repid. An example of this is shown in
table 2.

The numerical results indicate that three to four coefficients wpyn

are gufficient to represent the complete solution for practical applica-
tions. In table 2, the center deflections vc/h using the four coeffi-

clents wy,, LALTC T and. Wz3 are given. There is also shown in
this table the coefficient wil/h which is equal to wc/h if only the
Wy coefficient 1s used (with Wizs Wz, and W33 teken equal to zero).

Thus it is seen from table 2 that the dominant coefficlent is w4, and

in most cases the fourth coefficlent W33 is a very small percentage of

the first. This is expected since the final deflectlion 1s assumed to be
of the same form as the initial deflection. That is, the plate will bend
more naturally to the given initial deflection by a compressive load for
smell deflectioms.

Numerical examples are considered for two maximm initial deflec~
tion coefficients of h and (1/3)h where h is the thickness of the
plate. Comparison with the result fram reference 2 is good if account
is taken that a maximm initial deflection coefficlient of O0.lh was
used there. The deflection curves with increaesing loed are shown in
figure 4 together with the results fram linear theory. This figure
ghows the coincidence of results (small and lerge deflections) in the
linear range. Moreover, all deflection curves merge for large deflec-
tions regardless of the different Initial deflection amplitudes. Of
course, this 1s physically evident; also, the merging point appears to
occur outside the range of validity of the equations used.

This method of solution (Ritz method) can be easily applied to
large~deflection problems of a simllar nature. Further calculation,
for example, can be performed for initlally curved plates with the same
boundary conditions es those treated ebove from the integrals given in
appendix A, In summary, 1t should be mentioned agein that one differ-
ential equation (for FS and the boundary conditions are satlsfled exactly
and the remeining differential equation 1s satisfied on the average by
replecing it by the assertion of the minimim of the potential energy.
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Plates under edge shear loads.- In this example, a square plate
with a small initial warp i1s conslidered. The plate 18 loaded in pure
shear along the edges which are simply supported. The coordinate system
1s shown In figure 2. The warping is again treated as the initial
deflection wy of a flat plate. Thus, with a linear variation along

the lines of constant x or Yy, the initial deflectlion is

Wo = KX + Koy + kxy (16)

It is epparent fram equation (1) that the linear x and y terms of
the initial deflectlon equation (16) cennot have any influence on the
stress function F; furthermore, these linear terms do not enter strain-
energy expression z6) which is the same for thls exsmple. Thus, the
coefficient k of the xy +term in expression (16) is given by

W

Wo = ko = —22X xy = S oy (17)
a

where « = Vg /a; o -is as indicated in figure 2.

In addition to simply supported edges, the plate elements will
satlsfy the following boundary conditions which appear reasonsble for
physical applications. At x =0,a, o' =0 and ny' = Oxys and,

at y = 0,a, cy' =0 and O ' =0 It is noted that these condi-~

xy xy*
tions are satisfied, on the average.

The deflections Wy under losd are assumed as

[o2]
Wy = _;_ Wym 8in m:_a_cc sin % (18)
mn=1,2,3,...

From symmetry conslderations, wpyn = Wy for all values of n and m,

end, if m +n 1is an odd number, the terms must venish for the same
reason. In the example chosen, the series is trunceted at n=m =3

since the leading terms dominate. The deflection w = Wy + W, 1s then

glven by the expression

W W )
¥ = -Asin-’gc-sinﬂ+—l§(sm—’9‘—sinm+sin5’—°‘-sin’—‘x+
h h a b h a a a a

h

u(%)(fé) (19)

W, ) W
22 gin 21X gy 2V 4 33rsil:13’cxs:1.n3’fy+...:,+
a b h a b
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The substitution of this expression into equation (l) ylelds a solution
for the stress function F in the form

i
Ol

:; io Fqr cos 2 9-? cos 2 % (20)

The values of qu are given in table 3.

If equations (19) and (20) are substituted into strain energy
expression (6) , the strain energy U mey be expressed in terms of the
unknown parameters V115 W13 Voo and W33 The potential energy W

of the gpplied shearling forces along the edges is

W= crxy.h ﬂ ( ) dy
2(Qu 4 ov
= he + 21)
-3 (
where the integration is performed over the plan form of the plate. The
expression for (Bu i) can be found fram equation (3).
dy aOx

The total potentia.l energy V (eq. (7)) is now mede stationary with
respect to each of the unknown peremeters. The solution of the four non-
linear algebraic equations follows the iteretive procedure of reference 3.
The results are given in table 4 and figure 5.

The problem hes been evaluated numerically for ¥o =0 and

= Ty (22 2 4 2v)a)?
Vo nax 8h. The relationship between ( G )(h) and (By + o (g)

in each case has been plotted in figure 5. It 1is noted that, in the

first case of an initially flat plate, the postbuckling strength of the
plete increases continuously after the critical buckling load is reached,
wherees the clessicel small-deflection theory predicts a constant strength
(broken line in fig. 5).

The stress field developed in the plate as the buckling proceeds may
be readily computed from the values of the parameters Wi1> Wiz Voo,

and Ws3 by using equetions (4) end (5).

In figure 5, the results of an approximate solution (ref. 3) of
Von Kérmen's la.rg,,e-deflection Plate equations are plotted. This solution
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assumes the form of w; identical with equation (19), except for a con-
stant factor. However, somewhat more rigid edge conditions were imposed
on the plate (i.e., €' =0 at y =0,a and ey' =0 at x =0,a).
This accounts for the slightly larger value of Tqy. for a given value
of average shear strain. It is noted that this difference is small so
that it appears that the edge conditions have a small effect on the rela-
tion between applied average shear stress and average shear strain.

Nearly Cylindrically Curved Plates

The small-deflection equations of a curved plate formed fram a body
of revolutlon under edge and surface loads have been considered fram the
equations of equilibrium of a body of revolution in reference 4. In this
section, the large deflectlon of curved plates with small campound curva-
ture is investigated by modifying the large-deflection equations of a
circular cylinder to include a small initlal curveture. The coordinsate
system and an indication of the plate shape are given in figure 3.

The following equations govern the deflection of a curved plate
which differs slightly from a circuler cylindrical shape. It is noted
that these equations immediately reduce to those of reference 5 (where
other references are given) for the case of Wy equal to zero.

The medien-~fiber strains are

. i
ex_%;(ﬁ) L 9 %
¥ x 2\« d A
2 W
ey'=§;a+:2Lgyl) 'R'i , (22)
ow. ow ow. ow
1 _%u, oy 1 9N o 91
W Ty Tx T % & & %
)

The median-fiber stresses are given by

2
1> +Bwl Bw{‘ > (23)
dx ox
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In addition to the above stress and strain expressions the equili-
brium equations in the x- and y-directions are, as before,

do,' 90"
N =0
ax+ay (24)
00" Jo,'
x %% _o 2
. S (25)
If one introduces a stress function F defined by the set of
expressions
U':ée_F.
p'd
C'a
2
1 O F
=== > (26)
T TR
2
n=_8F
and combines these with equations (22) through (24) a compatibility
equation determined as
2 2
HF = | ( ng> - 3% 3w _1 % - 9 W, 3% (27)
X ¥y Raf o

results.

In place of a third equilibrium equation relating to the sum of the
forces in the normal direction to the surface, the potentisal energy of
the system is used for the direct method of solution as in the previous
cases. One notes that a first variation of the total potential will lead
to the equilibrium equation normal to the surface. The median-fiber
stresses and strains and the extreme-fiber bending and shearing stresses
are the seme as those given by equations (&) end (5) 1f it is remembered
that the coordinates x and y here are the cylindrical-surface
coordinates.

The strain-energy expression involving the sheet bending and
stretching is given by equation (6). However, the boundery conditions
imposed on this problem necessitate another stress function. The poten-
tial energy of the edge load will be the same as in the previous section,
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nemely, the average edge load times the displacement. Since the edge
displacement is a constant, this amounts to expression (8) with the
boundaries x = £l substituted for x = O,a. The initial deflection
from the circuler cylindrical shape will be teken as

Vo = cx2 (28)

Indicating a deviation of the meridian curve fram stralghtness.

Clamped conditions with regard to the slopes at the bulkhead or
stringer Junctures sre assumed. The reason for this agsumption was that
1t was felt that many tlmes the bulkheads or ribs are fairly stiff in
torsion gbout their flanges and that the flanges are qulte wide, thus
presenting a nearly clemped condition to the sheet ends. Furthermore,
since the plate is initially bulged along its axis, 1t would probebly
continue to bulge under load which would mean that the sheet would act
as & clamped sheet across stringers as well. Obviously, other cases
could be considered where nearly simple support conditions might exist.
From the nature of the problem just described, it is necessary that the
edges associated with the stringers move in radial lines; that is, the
displacement v at the edges y = tb must be zero. Also, it is assumed
that the edges represented by bulkheads or ribs remaln straight; that is,
the displecements u at x = tl1 are constant.

To satisfy the clamped condition the additional deflection function
was assumed as the series

Wy = i i Hﬁ‘g(l + cos m’—%) (l + cos n_g.x> (29)

m=1 n=1

Substitution of equation (29) into equation (27) will yield an expression
for a particular integral for ¥. It will be

— — 2

. P b

Fo=.._2£2_.._2ﬁ+Ei -Zq Fstcos%cosp%z (30)
8=0 t=0

where D, and ITy' are the megnitudes of the average compressive stresses

in the x- and y-directions, respectively. The values of Fy. are given
in table 5 and are similer in mskeup to the other problems.

Assertion of these boundary conditions adds a camplementary solution
to F +which has the form
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qmr qmr)
= E X h — B inh =—} +
:E: cos Q&l cos q 8 -
E Zl cos <Cr cosh % + —-rf{- Dy sinh %) (31)
Ir=

The values of Ay, Bg, OCr, and Dy are given in appendix B. After

applying boundary conditions to the complementary solution for the purpose
of determining the unknown coefficients, the displacement u is

o«

ap =3 S S Tlmaly (BBl eSS o, 2

m=] n=1 r=1 1 m=1 n=1

(32)

The expressions for the nonzero integrals of the total strain energy
in terms of the undetermined deflection coefficlents are given in appen-
dix C. Agein, a solution was obtained by collecting linear terms and
first omitting all nonlinear terms except one which was specified. The
equations were solved by Crout's method and the solutions obtained were
used to evaluate the nonlinear terms which were amitted. This iterative
process was carried out three or four times to yield three-plece accuracy.
It was most advantegeous to specify W3l rather than W11 in this exam-

ple for rapid convergence.

Three numerical examples were chosen for this section. One plate
has radius R, equal to one-half the value of the other two; another
hes a maximum initial deflection of one-half the value of the other two
and the seme radius R, as the first case. The results indicate that

the effect of initial curvature is very small on the additional deflec-
tion as campared with the effect of chenging the radius R,. The maximm
additional deflections are tabulated in teble 6 and the stresses are
given in table 7. The maximm additional deflections for one, two, and
four terms are given in table 8.

A plot of the additional deflection at the center is shown in fig-
ure 6 for the three cases considered and demonstrates graphically the
effect of cylinder radius and initial curvature.

The ratio of effective width to initial width defined as the ratio
of the load carried by the plate to the load the plate would have carried
if the stress had been uniform end equal to Young's modulus times the
average edge strain (ref. 6) is shown in figure T. An equivalent

e m e e i e e e —————— e A i e b e ot e e RV
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definition of the effective width in many cases is the ratio of the
average stress across the loaded edges to the meximum stress at the edges.
The results obtained using this definition are also shown in figure T(a)
and clearly indicate the difference of the two definitions in the cases
considered here. The reason for thls difference is the assumption of
straight edges with zero displecement of the y edges generating an

average load p—y' .

The effect of an initial deflection function for the curved plates
loaded in longitudinal compression 1s a reduction in the effective width.
In fact, the sheet deflects lmmediately upon loading since there 1s no
critical buckling load. As the load increases, the outward (negative
Z) bulging of the nearly straight circular cylinder indicates a higher
value of effective width than that obtained with the clamped flat plate
of reference T; this is probably due to the large curvature of the basic
cylinder as campared with that of a flat plate. This is shown in fig-
ure T(a). Figure 7(b) compares the effective width of a single finite-
length wave deflection of the problem considered here with the simply
supported very long circular cylinder of reference 6. The increase in
effective width here is due to the clamped boundary and the outwerd
bulging assumed. It is noted from the figures also that the change of
effective width with increasing edge strain is small.

CONCIUDING REMARKDS

The problem of the large deflection of plates with compound curvature
has been considered in this report. The large-deflection plate theory
and circular-~cylinder theory with an initial nonzero deflection function
are used. Three cases have been worked out campletely. These are an
initially curved plate subjected to a longitudinal compressive load and
to & shear load and a curved plate, with an initial deflection from a
circular cylindrical shape, loaded with longitudinal campressive loads.

The solution by the Ritz method indicates that a very small number
of unknown coefficients (two to four, ssy) was sufficient to give reason-~
gble results even with large deflections. Thus, the stress conditions
and large deflections of curved plates (campound curvature) mey be easily
obtained by such methods. Same results are shown In the figures and
tables.

The effect of an initial deflection function for the curved plates
loaded in longitudinal compression is a reduction in the effective width.
The effective width of the curved plate with almost cilircular cylindiyical
shape is higher than that of the initially flat plate and that given by
Ievy (ref. 6) for circular cylindrical curved panels.

The Pennsylvania State University,
University Park, Pa., April 29, 1955.



IE '
NACA TN 368} : 17

APPENDIX A
INTEGRALS OF RECTANGUIAR PIATE IOADED IN EDGE COMPRESSION

The deflections of a rectangular plate loaded in edge compression
are glven by the following expressions:

[o2] o0
W=D S gy otn T g B
=1 n=1
oo
mix nmy
Wy = 8, 8ln —— gin —~
m=1 n=1 n & b

If Poisson's ratio is taken as 0.3 for the material together with the
deflections given sbove, the nonzero integrals are:

b a > = b 4 2
gff o v aay =& > > raaf,gbly 2.
2EJg Jo (x cy) 2 =2,k,6 r=2,5,6 Iy 22 &

o ® o qrtb
q5 j]:3 sinh e

F +
a=2,k,6 r=2,%,6 t=0,2,4,6 a2 Mp ke

h
2E

© 4y I
b > ra gbp 2, > ax & p 2>..
2E<r=2,46 L~ 2 “or o 2 O

p) b q=2,k4,6
o) ) qstb
Py Siob -

=i

r I’F 0 +
g=2,4,6 r=0,2,4,6 a& Mg I Q

(=] o

b ditb
q3ﬁ33+51nh‘—‘a-'—

E h —2
Forfqt + == D, "&b
£ q=2,4,6 r=0,2,k4,6 t=0,2,4,6 )-l-a.e qu arq OB X
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EAE-be/;a -2(1 + V)Erx'ay' - (1"‘)2] dx dy =

0
22.2
0 © ) 1l -~ gi L cotha _Qﬂ
h &t b 2 g2 28
28 2.6 2 = > FarFaqt
a=2,4,6 r=0,2,4,6 t=0,2,4,6 ha Mg

b a 2 © o N 5
D 2 _ abD 2 2 2
5f j; [Fer - v d““"%m%sga?(m o §§>(wm-5mn)

= _ h—2 hp, 2D 2 2
Py 0t = - B2 - e 2R > n? (w2 = Byn?)
=1,3 n=1,3
where
anb
Mq = cosh grd + 28a
2 sinh et
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B

EXPRESSIONS FOR Aq;, Bq, Op, AND D, FOR CURVED SHEET

BAVING 1/R, MUCH GREATFR THAN MERIDIAN CURVATURE

When 1/Ry 1s much greater than the meridian curvature and with

Ux;y' = 0 along all of the edges,

1

7tb

Ay

Cr

!

~Dof 1 4 Xl
{1+

Substituting these values of Aq

displacement and zero v displacement
of Bq and. Dr:

coth i’?)

coth Iltl)
b

and C, and assuming constant u
will give the following values

q Bq_

W + W

g ;mT?;ﬂ’zT("uz + gy + 9y3? + ) - R

st & s lmmry (il + 9v? + By + Beyges)

b (m* \:55)
=t W("ﬂ'}l + gy + ug® + ows,?) 2@; sinh (3xb/1)
stz ¢ s G (an * 1s¥s)

N F.d 2 2!
1,55 b st G/7) f® +9w557)

D

+ W
2, . + 912 + ) - SEB Y11 1)
T« s + o ) - 22 L)

1 2 2
'5'1'5% 5inh iazﬁj("ﬂ R E T It m"SJ.“'B)

o (a3t ¥53)

e
.

3 2 2

192 1 simb (31 ("n"la Fiyy t Figy iyt Ty ) 18z sinh (3x1/b)
1

515 3 smm TRy (13 + S515s)
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APPENDIX C

INTEGRALS OF RECTANGULAR DOUBLY CURVED PIATE WITH l/Ro

MUCH LESS THAN MERTDIAN CURVATURE

The deflectlons of the rectangular doubly curved plate with l/R0
much less than meridian curvature are defined by the following expressions:

0 S g P o (o2

= 2
W, = Cx

With these deflections, the nonzero integrals are

1 2
hff '4 o) ax ay = 2B FBtQ(t2l+52b>+
= -1%Y-b (Ux UY) 2 5"0,';:--- -b:o,]_z:;,,“ P E

A
%T_b(gz + IR + p;,z) - LEdn i i Fgt b:;qt (,;2_2:_:‘ + %)Bq(-l)t sinh 3’:3 -

a=1,2,3,... t=0,1,2,...

= 1
b S > F, % + 52:31)1.(-1)3 sinh ZLL 4
7

8=0,1,2,... r=1,2,3,...

)
smdn S 32 iinhaﬂ+3)+

q=1,2,3,... q 7’2 2ar. 1 1
© ) : 2[2b\ 21
yEdh D> B Dy -ﬁé-\:——g(-l)r sinh 21"1] B )9 gtmn -13“—1] +
9=1,2,3,... r=1,2,3,... leb mt o b

"

2 ot

oEsttn D, r—a(——zl sinh _b—l + %)
r=1,2,5,... b
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~1Y b
where
arib
T B L
1 b 2 N 2 2
fo S =D“wa2<-L+L) + W 2(-L+—9—> +
2-Z-b< 1) 21 |1 (272 1B \2 712
2 2
g sz D)
W + =) +w Z 4+ 2 +
31 (12 b2 33 12 2
ﬁ(W 2+ + 81w, . 2 + 2+l62w Weo + 81w 2>+
87,3 11 1115 31 T Y13 31733 33
J'tll.Z

2 2
——( Wy, 2wllw31+ 81‘W 13 24 162w13w33 + Vs 24 81W33 )}
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TABLE 1
VAIUES OF F,, FOR w = m=l,§,. n=l,;%,. Wy Sin B gin DU
Wo =817 sin Eain ¥, AD afp =1

a | = Tor
0 2 (E/32)(w112 - 8172 - 2wyqwyz + 9w - 18W31W33)
0 L (E/6’+\)(wllw15 + 9w5lw53)
o | 6 | (w/288)(wyz? + ows5)
210 (E/32)(V112 - 8117 - 2iwgy + 9y5” - 18"13“33)
2 2 (B/16)(wy g5y + Wigwyy = bwvyzvs, )
2 | b | (BA00)(=wppwys + 9wy ywss + 25w 5s))
2 | 6 [ (B/%00)(9wyzw35)
oo | (B/6k)(wppwsy + 9wyzwss)
ko2 | (BA00)(wiyywsy + Gy + 25wy )

b b | (B/6)(=ryzins)
N 6 (E/2,701L)(-9Wl5w33>
6 | o | (/288)(wyy2 + 9w5,?)
6 | 2 | (B/400)(9wswss)
6 | b | (B/2,70%)(~9w5yws5)
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TABLE 2
NUMERICAL RESULTS FOR INITTALLY CURVED PIATE UNDER EDGE

COMPRESSION FOR VARIOUS INITTAL DEFLECTIONS

(B-) Wo = 0-333]3.

wy1/h i;peg/kan Vo /b
0.35 0.176 0.351
RITo) .726 o1
.50 1.503 195
-5 2.780 .48
1.25 4 .693 1.231
2.00 8.342 2.261
(b) vy =nh
Wy /b Tyb2h/%°D W, /b
1.05 0.288 1.076
1.15 .902 1.175
1.25 1.480 1.273
1.50 2.877 1.50%
1.75 h.osh 1.749
2.00 5.6kl 1.977
2.50 8.640 2.411
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VAIUES COF qu FOR SQUARE, INTTTALLY CURVED PIATE UNDER SHEAR LOADING

{F=E i qucosﬂ
q,r=0

Mk -19) gy, k=22
ary "nyw: K _Eiy
b4

e i (a) (a) Far
2 0 0 2 (1/8)(wll2 - 2wy y¥ys - gz + 9w152)
4 0 0 3 (1/26) (w3035 + yzgs + 20?)
° ° ° : (1/72) (5 + 9v557)
2 2 2 -2 (lﬂl-)(vuw13 - 2w132) + (1/16)w, K
2 " 2 N (1/200)(9w11w33 - ez 25w152)
2 6 2 -5 (1/200) (9w]5w53)
) 4 2 b -2 (1/200) (9w s = w5 + 25w,57)
6 2 6 -2 (1/200) (9w15333)
" 6 I -6 (1/1,352) (—9w13w33)
6 L 6 &4 (1/1,352) (-9w15w53)
4 4 " " (1/32) (4132)
1 1 1 -1 ("‘)(“’13"’22) + (L/a)wp K
1 3 1 -3 (1/50)(1+wuv22 + 16w15w22) + (3/100)w) 5k
1 5 1 -5 (1/338) (16wa22 + 36w22w33)
3 1 3 -1 (1/50)(tsry 7 + 16wy3¥0pp ) + (5/100)iy3
5 1 5 -1 (1/538) (16575 + 36¥p557)
3 5 3 -5 (1/578) (“‘“15“22)
5 3 5 -3 (1/578) (-1+w13w22)
3 3 3 -3 (1/36)w55K

Bp1ternate values.
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TABLE 4

NUMERTICAT, RESULTS FOR INITTATIY CURVED SQUARE PILATE UNDER SHEAR

IOADING FOR DIFFERENT INITTAT. DEFLECTIONS

(&) wg =0
w du , dvl/a\ @2 ?Q’ae W,
+

22/h > X ( ) o 22 lc/n

0 ' 22.087 8.495 22.087 0
.05 22.857 8.7h7 22.743 .392
.10 2l .612 9.330 2k . 257 -T29
.15 26.985 10.091 26.236 1.037
.20 29.698 10.939 8.4 1.295
.25 32.659 11.842 30.789 1.526
.30 35.854 12.795 33.268 1.737
40 h2.921 14.839 38.582 2.123
.50 51.005 17.100 I L61 2.479
.70 T0.692 22.405 58.255 3.157
1.00 110.470 32.770 85.202 k.159

(b) w, =8h
Toac T8
Yoo /h Su , ov (a)g el Sxy® ¥1c/h
y x e Gha

0.05 14,349 L .01 11.443 1.003
.10 21.897 6.647 17.282 1.438
.15 28.32) 8.505 22,11 1.777
.30 47.583 13.966 36.311 2.615
.50 T70.873 20.168 52.438 5.393
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TABLE 5

EXPRESSIONS FOR Fgy IN DOUBLY CURVED SHEET UNDER AXIAL COMPRESSION

[1/80 is much greater than meridien curvatur{'

1 4
1 6
2 1
2 2
2 3

8 t F_B12
‘— 2 v. 2 u . 9w 2 oW _W, 2
o | Bl 2 e ot )
F X (v W, OW__W. W. 2 )
= o | el T g
I oyl 9 9'212 8L. 2 2
3 0] i (l) -321"31"'31- % -3—,2w33w15-3—2w53 +;§(v31+v33)
[ 2 Wqq ¥,
Bl ‘/(l_?h)] (‘ -3 "13"33)
B 2
610 _]/(zgh):l '395"312 ';%"332)
» 3| w,.2 w.w ow..2 9w _w
o |1 _1/(%)}E%-3f2-%-_%z+§(wuwﬂi|
- 3 .2
° 1 _]/(TI)]('%'E"HVB - 55 v ’%‘51"33)
12| gy ws? B BInR 2,
o |5 | ]l s 2 i oy
B n2|{ vv 9rr3lw)
o | ¥ _]/(T)]('T—lz'_hz
2
o e |t g -ge)

“le
+
o2
oy
1 1
NG
<

&

'
Bbo
=
=
&
Rlo
&

[

'
o
]
3
+
—
L
+

E\Jd
o
L

]/(1% . Lglﬁ (_ £ M11¥13 - 5 Y115 - ‘_'_1;_‘;2)
(

b st - )

2
Bt A . I N -2 i 53571
( 32 ']% 11%51, 32 ¥11¥33 32

2
2 81
:l(' 35 11¥15 ~ 35 Y153 ~ 35 V13- - 12 V15¥33 ~ 55 '13"31)

27
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BBIE 5.- Coneluded
RXPGSSTONS FOR ¥, I DOUBLY GURVED SEEET UIER AXTAL COMPRESSTON
TSN —,
s Fgt
2 :]7/()%* 12]( T 1155 - B V1551 Ti)
2 :’/()"'zh * 3%)2] (- vazv 53)
| e - B - o+ (0 2]
3 :]7/(971) * l%ﬂ (' 35 1151 " 55 YL - 35 13751 - g_a ¥si¥s3 - 35 V1153 - ‘9‘ "51"33)
3 L’/(‘? -2y L % v - B i - 0 B (&ac i unoze)"%
g :’/(%’”%)f(gl ¥13¥51 ~ 32 V51753 T 52 u33)
5 || (e B¢ B - )
* :’/(‘1'% * %)ﬂ ( & "1 - 32 1153 < 35 "15"31)
b :1/(@2'* * !*blﬁ (- & varvss - B iz - & )
c | | e s - B - )
b _’/(% * Eﬁlﬂ (- *15%1)
sl e | [ )
6 _1/(3% * %ﬂ (- 5 ¥® - 55 %™ 53)
: :’/(1?* * %l)ﬂ (- & %51753)
o |5 | [ B B - ) )
o | | (e 2] o)
¢ | o | [y
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TABLE 6

DEFLECTIONS FOR NORMAL IOADING ON CURVED PIATE WHERE

/b =2

AND 1/R, IS MUCH GREATER THAN MERIDIAN CURVATURE

(a) R, = 0.4b2/mn

s Vo =h Wg = h/2
ﬁ;b%/Enahe 1o/ Db /BCHY |y /n
-0.25 0.689 =0.138 |  mmmem | e
-.50 .24k -.251 1.247 =0.247
-.75 1.734 - L I e
~1.00 2.252 -.438 2.2k2 -.431
-1.25 2.858 =531 | mmeme | cemeaa
-1.50 3.584 -.636 3.566 -.616
(b) Ro = 0.20%/wh; w, =nh

s /o §;bi/£n2h2 Wi/

-0.1 0.553 -0.058

-.2 1.061 -.112

-3 1.529 -.163

-4 1.971 -.210

-.5 2.392 -.256

-.6 2.802 -.300




TABIE T

1/R, MUCE GREATFR THAN MERIDIAN CURVATURE, AKD wp = h

NUMERICAL VAIUES OF BTRESSES CATCULATED FOR DOUBLY OURVED SHEET WITH 1/b = 2,

X position
0 ! ) A 0 !
'IT'ba ¥ position
Ra -;E? o} + 0 i b
o‘x"'ba a},"b2 o’x"be a}_"bz cx“be uy“ba' crx'ba uy'be ux'be r[y"be Gx'ba u:y"ba o'x'ba _ut_,,,'b2
B | Bn® | Enn? | B n® B |BAhS |Exn® | BePts | xS |BnhC | Behe | Bnoh® |Bith® | ExtnC
0.5%5 | ~0.092 | -0.088 | 0.072 | 0.025 | 0.020 [0.065 [ ~0.5h9 [ 0.098 | -0.542 | ~0.250 | +0. 445 | 2.148 | ~0.670 [ ~0.309
1.061.] -.189| -.190 | .1 | 045 | 046 | .45 (=-L.O04O | .198 [~L.072 | ~.51% | -.843 | .30L [-l.277| =-.583
0.2 | 1529 203 | -.284 | .215| .08B8 | .068 | .216 |~1.504% | .30L |~L.k69 | -.762 |-1.198 | .57 |-1.886) -.881
™ |ro7i| -377| -.379| .286| 091 | .091 | .288 [-1.928 | .hO6 |-1.833 | -.808 |~l.52h [ .67 |-2.453 | =Ll.152
2.392 | =475 =473} 359 | W11k | .1k | .359 | =2.309 | .513 | -~2.259 |-1.001 | ~1.827 | .783 |-3.006 | -L.417
2.802 | ~.570] -.568 | 43| .137 | .136 _ 431 [-2 71k | 625 | -2.583 [-1.139 | ~2.11% | 954 |-3.55% | ~1.684
0.689 | -0.226 |-0.210 |0.177 |0.056 [0.049 [0.154 |-0.667 |0.140 | =0.645 |-0.282 | -0.552 | 0.185 [~0.850 | ~0.%403
1.2 | =481 ) -u66 | 370 117 | .10 | W39 <1179 | 276 |-L.077 | 452 | -.9h0 | be2 |-1.600 ] -.762
0.kp2 L34 | -7 | ~.669 | 561 177 | 155 | 492 |-L.613 | A2k | -L.362 | «.50L [-L.254 | .67h |-2.31L | -1.102
3 2.252 | =.96L | -.852 | .768 | .23 | .193 | .609 |~2.038 | .530 |-L.511 | -.517 [-1.588 | .927 |-3.115 | -1.509
2.858 |-1.212 | ~.988 | .999 | .716 | .213 | .673 |-2.5k7 | .810 |-1.5%0 | =.213 |-1.983 [1.173 |-%.090 | -1.966
3,584 |=1.470 |-1.186 |1.217| .385 | .253 | .802 |-3.140 | .961 |-L.581L | .075 [-.560 [1.633 |-B.21k | -2.546

o¢

199¢ KT VOVH
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CONVERGENCE OF ADDITTONAT, CENTER DEFLECTION FOR DOUBLY CURVED

TABLE 8

SHEET UNDER NORMAL EDGE IOADS WITH 1/R, MUCH

GREATER THAN MERTDIAN CURVATURE

() W, =h; Ry =0.4p2/sh
Bpb
575 One term Two terms Four terms
Ex h (a)
1.194 -0.177 ~0.239 -0.238
2.077 -.296 -.400 -.407
3.074 -.1420 -.552 -.562
(b) W, =h; Ry = 0.2b2/xh
Bb°
5% One term Two terms Four terms
Ex“h (2)
1.053 -0.083 -0.111 -0.111
1.932 -.150 -.205 -.205
2.709 -.208 -.288 -.288
ELInterpola‘ced fram four-term numerical calculations
TRb°

for same values of

e




Figure 1.- Coordinate system for pletes with normasl edge loads.
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Figure 2.~ Coardinste system for plates under shear loads.
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Figure 3.- Coordinate system for doubly curved sheets with 1/R, much
greater than meridian curveture.
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2.4

2.2

2.0

1.8

1.6

Linear /
6 | Theory/

™D

Figure 4.- ILarge deflections of initially curved sheets under edge
compression.
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Figure 5.~ Shear loading versus average shear strain for initially curved
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Figure 6.- Additional deflection far sheets with 1/R,
then meridian curvature.

much greater
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